Search This Blog

Saturday, April 28, 2012

School & IT's presentation

0 comments
Today I've posted on YouTube the introductory movie of School & IT and I already know that it will grow up immediately in the charts. See it here:


Tell me what do you think about it in comments.

Why you'll like Skype?

0 comments
I'm sure that at least once you heard about Skype, but maybe you didn't install it to see how it works. Well, Skype is great if you want to talk with your friends, because at the video and audio conversation the quality is brilliant. Also, the file sharing is very useful, because they're sending quickly and the size limit is the biggest possible, even 5 or 6 times bigger than at Y!Messenger.


A very promoted feature of Skype is the one with you can dial or send text messages to USA or Canada, from anywhere in the world, for free or from USA or Canada to anywhere in the world, also for free! But the wonder doesn't stops here! You can dial and send text messages PC-to-phone or phone-to-phone via Skype from anywhere to anywhere by paying them at a very low price. I forgot to say that everything that's PC-to-PC is absolutely free!


The newest feature of Skype is also the most useful and here I'm talking about...

Saturday, April 21, 2012

Maine incepe scoala. Suntem gata cu temele???

0 comments
Dupa doua saptamani de vacanta, de maine reincepe scoala, dar suntem oare gata cu temele pentru saptamana ce urmeaza?? Dar cu invatatul pentru tezele si testele ce s-au anuntat?? 
Majoritatea profesorilor/invatatorilor au dat teme de vacanta, macar la romana si matematica si nu prea mici, sa spun asa.... 
Lasati un mesaj, in comentarii sau pe chat, sa aflam si noi cat de greu sau de usor va e cu temele de vacanta... pana atunci... SUCCES LA INVATAT!!!

Wednesday, April 18, 2012

C++: Rotirea unei matrice cu 90°

0 comments
Astazi va voi arata un algoritm foarte practic, dar ceva mai avansat si intr-o anumita masura mai interesant decat cele pe care vi le-am prezentat pana acum. Acesta consta in rotirea unei matrice patratice cu 90° in sensul acelor de ceasornic. Aceasta rotire a matricei necesita o matrice auxiliara in care o vom roti pe cea initiala, deoarece nu putem folosi o variabila ajutatoare. O alta varianta ar fi un vector auxiliar, dar astfel algoritmul se complica. Iata mai jos algoritmul de rotire cu 90° in sensul acelor de ceasornic sau spre dreapta a matricei "a" in matricea auxiliara "b":

            for(i=1; i<=n; i++)
                    for(j=1; j<=n; j++)
                           b[i][j]=a[n-j+1][i];


Foarte simplu de retinut, nu-i asa? Dar care este explicatia? Imaginile de mai jos reprezinta matricea initiala "a" si matricea in care aceasta a fost rotita, adica "b", iar cu ajutorul lor vei vedea exact unde "va ajunge" fiecare element dupa efectuarea algoritmului de rotire.